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SUMMARY

It is well known that vehicles traveling at high speed excite the air
to high temperature, resulting in dissociation and ionization, so that
the air properties deviate considerably from those of a simple gas. Some
effects of these reactions are considered in this Report in relation to
the thermodynamic properties of the air. the transport coefficients, and
the diffusion of heat.

Methods are presented for calculating the thermodynamic properties of
air with good accuracy up to 15,000° K and for pressures from 107¢ to
10? atmospheres,

SOMMAIRE

Ainsi qu’il est bien connu, le vol a grande vitesse de tout engin
provoque des températures élevées de 1'air, donnant lieu en conseéquence
aux phénoménes de la dissociation et de 1'ionisation, de sorte que les
caracteristiques de 1’air différent sensiblement de celles d'un gaz simple.
11 s’agit dans ce rapport de certains effets résultant de ces réactions
considérés en fonction des proprietés thermodynamiques de 1"air, des
coefficients de transport et de la diffusion de chaleur,

L’ auteur présente des procédés de calcul des caractéristiques thermo-

dynamiques de 1’air, avec une bonne preécision pour des températures
s’ élevant a 15.000°K et des pressions comprises entre 10°% et 102 atm.
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NOTATION

R universal gas constant

p pressure

el density

T temperature

M0 molecular weight at standard conditions

Z total number of moles from one mol of initially undissociated air
€, fraction of oxygen molecules dissociated |

€, fraction of nitrogen molecules dissociated

€, fraction of atoms ionized

K1 equilibrium constant for reaction 02‘* 20

K2 equilibrium constant for reaction N, = 2N

K population - weighted average of equilibrium constants for reactions

0—-0"+e” and N—-N +e”

Xy mol fraction of chemical species

H enthalpy per mol

] entropy per mol -

Q partition function for i*h species
e ratio of specific heats

d speed of sound

v velocity of flow

vy velocity of flow at initial conditions
X distance

t time

r distance between atoms

o collision diameter



Pr

mass diffusion diameter

constants

electron charge
polarizability

total charge density
viscosity

ith

mean molecular velocity of species

mean free path of ith

species

particle concentration

partial coefficient of thermal conductivity
heat flux potential

thermal diffusivity (= k/pCp)

coefficient of heat capacity

Prandtl number

vi



THERMODYNAMIC AND TRANSPORT PROPERTIES OF
HIGH-TEMPERATURE AIR

C. Frederick Hansen®*

1. INTRODUCTION

It is axiomatic that the science of aerodynamics must be based on a good understand-
ing of the medium through which vehicles fly, At subsonic and low supersonic speeds
near the earth’s surface, it is generally sufficient to assume that the atmosphere
behaves as an ideal gas and that the ratio of specific heats is a constant with a value
about 1.4, However, it is well known that vehicles traveling at high speed excite the
air to high temperature with the result that air properties deviate considerably from
those of a simple gas. For example, Figure 1 shows the major chemical reactions which
are produced in the stagnation regions of vehicles &s a function of altitude and velo=-
city. At about 3000 ft/sec, the vibrational energy of air molecules is excited.

Oxyegen dissociation begins near 7000 ft/sec and nitrogen disscciation occurs at velo-
cities greater than 15,000 ft/sec. Single ionization of atoms becomes dominant near
escape velocity. The dissociation reactions are encouraged by low pressure, of course,
and the altitude dependence shown in Figure 1 is a consequence of this fact. Some
effects of these chemical reactions will be considered pertaining to the thermodynamic
properties of air, to some of the transport coefficients, and to the diffusion of heat
through gases.

2. EQUILIBRIUM THERMODYNAMIC PROPERTIES OF AIR

The equilibrium thermodynamic properties of gases can be calculated with good con-
fidence, provided the energy levels of the gas particles are accurately known, and a
number of such calculations have been tabulated for air, Perhaps the most complete
and exacting calculations are those performed by Gilmore! and by Hilsenrath and
Beckett?, Both of these calculations are very exact in the sense that they take into
account many of the minor chemical components of air and small corrections to the
partition functions of the molecules, Logan and Treanor® have also prepared tables
of air properties for which all of the important components are considered. These
precise calculations involve multiple iteration procedures such that the labor involved
would be discouraging indeed, if it were not for electronic computers.

The content of the tabulations in References 2 and 3 has been summed up graphically
in the Mollier diagrams prepared by Feldman® and by Moeckel®. Using such graphs one
can solve a number ot important aercdynamic problems, such as finding the properties
of isentropic expansions or of non-isentropic shock discontinuities (see, e.g., Ref. 4,
6, 7, or 8).

For a number of reasons, it is desirable to have approximate, analytic solutions
for the thermodynamic properties of air in addition to the precise solutions mentioned

*Chief, Physics Branch, National Aeronautics and Space Administration, Ames Research

Center, Moffett Field, California, U.S.4A.



above, From an inspection of the tabulated equilibrium concentrations of the chemical
species in air!, it is immediately apparent that there are but four reactions of major
importance over a wide range of pressure and temperature, These are the dissociation
of molecular oxygen and of molecular nitrogen, and the ionization of atomic oxygen and
atomic nitrogen: -

0, — 20 (1)
N, — 2N (2)
0 - 0" +e (3)
N - N+ (4)

With one exception, all other reactions yield concentrations which are of the order of
0.1%, or less, of the major components given by these reactions. The exception is the
formation of nitric oxide, which may become a sizable minor component of air at high
pressures (see Ref, 1). However, the heat of formation of NO is very nearly the
average of that for 02 and N, . so the production of NO does not appreciably
change the balance between atoms and molecules, As a result, the thermodynamic func-
tions for air are not strongly influenced by this reaction.

Some distinctive features of the foregoing reactions are convenientiy summarized on
a graph of the compressibility as a function of temperature (Fig. 2). The compressibi-
lity is defined by the gas law

RT Y
= Z(T— | (9)

where R 1s the universal gas constant, p, o and T are, respectively, the pressure,
density and temperature of the gas, and Mo is the molecular weight at standard con-
ditions. To the approximation thalt the particles obey the ideal gas law, Z r1epresents
the total number of moles formed from a mol of initially undissociated air. Since air
contains about 20% oxygen, the compressibility approaches 1,2 when oxygen dissociation
is complete. It increases further to about 2.0 when nitrogen dissociation finishes the
conversion of molecules into atoms, Single ionization of the atoms doubles the number
of gas particles again, so that Z approaches 4,0 when these reactions are complete,
Note that the slope of Z gets very small between reactions, indicating that one
reaction is essentially complete before the next begins, This follows from the fact
that the dissociation energy of nitrogen (9,76 ev) is nearly twice the dissociation
energy of oxygen (5.08 ev), while the ionization energy of nitrogen atoms (14.54 ev)
and oxygen atoms (13.61 ev) is nearly three times as great. Thus the different reac-
tions proceed in different intervals of temperature, and for purposes of approximation
it can be assumed that they are independent of one another, The two ionization reac-
tions occur simultaneously but with nearly the same energy changes, so for this case

it is assumed that, once the air becomes dissociated, all atoms constitute a single
species which has the population-weighted average properties of the nitrogen and

oxygen atoms,

We shall review briefly some of the essential relations involved in calculating
the approximate thermodynamic properties of air. Further details may be found in



Reference 9, If € is the fraction of oxygen molecules which are dissociated, €,
the fraction of nifrogen molecules dissociated, and €, the fraction of atoms which
are ionized, then the compressibility is

Z = 1+ €, te, + 2¢ (6)

3

The reactions are assumed to be completely independent and, to the order of approxima-
tion being considered, it seems adequate to take the ratio of nitrogen to oxygen in
air as 4 to 1. Then one obtains

4p
-0.8 + [0.64 + 0.8(1 + —
Kl

€ = (7a)

1
4
2(1 ; _D>
Kl
4p
-0.4 +/0.16 + 3.84{1 + —
K?

€, = (7b)
ap
KZ

1
€, = T/ Tc)
P/t pK) e

where Kl and K2 are, respectively, the equilibrium constants for reactions (1) and
(2) in terms of partial pressures: K3 is the population-weighted average of the
equilibrium constants for reactions (3) and (4). The equilibrium constants are calcu-
lated from partition functions which include only those energy levels up to 6 kT (8.76
ev at 15,000°K), The energy, entropy and specific heats of the components are also

calculated from these abbreviated partition functions.

The form of Equations (7a) through (7¢) is suitable for constant pressure calcula-
tions. For constant density calculations, these equations become

3.20RT
-1 +/1 + i
K1Mo
€, = (8a)
8cLRT
K1MC
/ 12, 8¢RT
-1 +/1 + ___JE__
K2M0
€, = (8b)
8pRT
KM

20



8ORT
-1+ /1 + ad
J KM,
€, (8¢c)

3 4ORT

K3M0

At this point it may be remarked that the formation of NO can be included in the
closed form approximations if one is willing to go to the trouble of solving cubic
equations rather than the foregoing quadratic expressions.

The mol fractions Xy of the chemical species are given by

0,2 - €,
X = (%a
0, Z )
B 0.8 - €, o
X = — )
N, Z
_ 261 - 0.463 (509
x, = — c
0 vA
252 - 1.663 S
Xy = —————— (9d)
N v4
263
XN++0+ = Xe' = ..? (99)

and the enthalpy and entropy for the mixture are found by a simple summation over all
the species

— =/ x, — 10
RT - Lacinm (0
5 Z G . +d(ln Q1)> | ) : D )
~ = x; (In — | - x;(ln x - —
e A U TR T A " b,

The symbols H and S refer to the enthalpy and entropy per mol of particles and

I{s the partition function for the jth species at the standard state pressure Pye
Note that the N* and 0% fractions should be considered separately for the term

xi(ln xi) which appear in the entropy (Eq. 11), though they may be combined elsewhere.

The accuracy of the foregoing approximations is indicated in Figures 3(a) through
3(d). Figure 3(a) shows the percentage discrepancy between the compressibility given
by Equation (6) and the solutions of Hilsenrath and Beckett? for densities of 102, 1077
and 107° Amagat, Figures 3(b) and 3(c) show the same comparison for enthalpy and entropy.



It can be seen that the discrepancies are generally less than 5%, sufficient for many
engineering purposes, The largest discrepancies occur at high densities where there
is some overlapping of the reactions and where the formation of nitric oxide should be
taken into account for greater accuracy,

The specific heats of air may be found by taking the derivatives of energy and
enthalpy. The approximations lose accuracy with each successive order derivative, of
course, but still the agreement is generally within 10% of the iteration solutions
performed by Logan®. Fortunately, one does not usually use the specific heats directly
in aerodynamic caleculations anyway, but rather the ratio of specific heats, ¥. As
shown in Figure 3(d), the approximations preserve the accuracy of this quantity within
a few percent,

The speed of sound, c, will be defined by

/3
2 = (2 (12)
\do/g
which may be transformed to
din )\
b HIn T :
e2p (in )/p
— =7 = (13)
D i+ /E(In Z)\

“o(ln T)/’p

Using this quantity, one can evaluate the integral

P g
z=f—p (14)
o P

which is useful for determining the Riemann invariants v & | for one-dimensional,
isentropic flow. The change in velocity along the characteristic directions in such
gas flow is given!® by

vy, = oty - D (15)

where the subscript 1 refers to initial conditions and the positive sign corresponds
to the positive characteristic direction

dx

— = v+e¢ (16a)
dt

and the negative sign to the negative characteristic direction

— = v-c (16b)



in the time-distance (x,t) plane, The integration of Equation (14) is along a
constant isentrope, and the solutions are performed by iteration with an electronic
computer inasmuch as entropy is not one of the independent variables in the analytic
expressions for the gas properties. Where very small changes in flow properties are
desired, as in the construction of a fine net characteristics solution, it is more
convenient to work with just the integrand of Equation (14). Small changes in flow
velocity are approximately given by e

p \ Ap

— 1mn
\&; P

V*Vi:\,

where the algebraic sign of the pressure change Ap corresponds to the sign of the
characteristic direction. The quantity

/o)
1 = [ — | (18a)
co /)

is plotted in figure 4 normalized by the ideal air value

RT

I* = (18b)

where <y is taken equal to 1.4. The ratios are given as functions of temperature for
isentropes ZS/R equal to 30, 40, 50, 60, 70, 80, 90 and 100. Values for intermediate
entropies may be estimated reasonably well by interpolation. Numerical values of I/1*
and ! are tabulated in Reference 11.

3. TRANSPORT PROPERTIES OF AIR

Next consider some additional properties of air needed for aerodynamic calculations,
namely the transport properties viscosity and thermal conductivity. In estimating
these properties, one is faced with two alternatives. The transport coefficients may
be calculated by the fairly rigorous but complex methed of Chapman and Enskog!? or by
the simple but approximate kinetic theory of hard, elastic spheresls. If good esti-
mates of the interparticle potentials were available, so that the Enskog collision
integrals could be determined accurately, the choice would immediately fall on the
former method, of course. However, at present the potentials are uncertain enough so
that it is doubtful whether the inherent accuracy of the more rigorous method could
be realized. Inasmuch as encouraging progress is being made on quantum mechanical
calculations of the interparticle potentials (see, ¢.g., Refs. 14 through 17), it has
been decided to defer the labor of making the rigorous solutions until all of the
important potentials are available. In the meantime, some estimates based on the
simple kinetic theory have been prepared. It may be noted that this elementary
approach need not be discounted unduly, for it does give reasonsbly good answere where
experimental evidence is available for comparison.

The first step is the calculation of mean free paths from the effective collision
diameters. Hirschfelder and Eliason!® have found that for a wide variety of different
attractive potentials, the collision integral method corresponds to an effective hard



sphere diameter equal un the distance where the interparticle potential is about -0.6
KT. In the case of repulsive potentials, the effective diameter for momentum and
energy transport is the distance between the atoms when the potential is about 0.9 kT,
while for mass diffusion it occurs at about 1.6 kT. These simple criteria might be
applied if only the potentials were known, Unfortunately, in the case of atom-atom
and atom-ion collisions, the picture is complicated by the fact that the particles may
approach one another along any one of a number of different potentials, depending on
how the electron spin vectors happen to add up. For example, Figure 5 shows the
qualitative form of the potentials for collisions between two neutral, ground-state
nitrogen atoms as a function of the distance r between atoms!®. The lowest lying
potential, !5, has the lowest total electron spin and it is known quantitatively from
the vibrational energy levels observed spectroscopically for the stable ground state
molecule. Since the higher lying potentials are not known quantitatively, we are
forced to estimate the average effective size from the single known potential. For
this purpose, it has been assumed that the average effective collision diameter is the
distance between the atoms when U(!Y) equals -kT for the case of momentum and energy
flux, and -2 kT for mass diffusion. This procedure undoubtedly overestimates the
size of shallow intermediate potentials (such as °Y and °% - Fig. 5), On the
other hand it underestimates the relatively long-range forces between particles in
excited states. The very steep repulsive potentials (such as 'S of Fig. 5) are
roughly symmetrical with the lowest attractive potential over the long-range part of
the internuclear separation distance, so this potential is probably correctly accounted
for to a first approximation.

To be more specific, the following formulas were used for calculating collision

cross sections (a Sutherland type cross section is used for oxygen and nitrogen
molecules): .

c
= - 1+; (19)

where the constant € is 112° K and S, the molecular cross section at very high
temperature, is 3.14 x 10715 cm?. The lowest lying atom-atom and atom-ion potentials
may be approximated by the Morse function

U -B(r/r -1) 2
E = l-e -1 (20)

whence the collision diameter for momentum and energy transfer, o, is given by

c 1 kT
— = 1-<=1In ( -1 - — (21a)
Te J5 D

and the diameter for mass diffusion, ¢’, is

o! 1 2kT
— = 1-_-In{l -1 - — (21b)
r, 5 D

The constants Tos £, and D/k for the various types of collisions are taken from



Herzberg!? and these are listed in the following table:

Colliding D/k r,
particles (%K) Jos (Angsiroms)
0-0 59, 000 3.24 1,207
N-N 113,200 2,96 1.094
N-0 75,400 3.18 1,151
o-o* 75,200 3.18 1.123
N-N* 101, 200 2.94 1.116

For electron-~atom collisions, the atom becomes polarized by the approach of the
electron and & charge-dipole type of interaction results, The classical interaction
energy of the induced dipole with the electron’s field is

u = - (22)

where e 1s the electron charge and a is the polarizability., The polarizability is
taken to be 13.2 x 1072%cm® and 10.3 x 10"2%cm® for oxyzen and nitrogen atoms, respect-
ively. The quantum mechanical cross sections calculated by Hammerling, Shine and
Kivell® show that the Hartree electrostatic field and the exchange integrals both
contribute to the interaction energy as well as the polarization., However, they find
that these two effects roughly compensate one another, and so these corrections will

be omitted for the approximation being considered here.

Finally, the ion-ion and ion=-electron cross sections are calculated from the simple

Coulomb potential between two charges. The correction for the charge shielding effect
given by Cohen, Spitzer and Routly?® makes the cross sections weakly dependent on

density as follows:
2 1/2
s = (92 ! 3 K 23
= gl = -
KT " el ™, (23)

where n, is the total charge density, both positivc and negative.

The viscosity was calculated from the simple summation formula for a mixture of

hard spherical molecules-%:
_ 57
I 3—2— 'oi ui)\i (24 )

i



where uy is the mean molecular velocity of the ith species and the mean free path
Ai is given by

1

Ki = " Ty (25)
2n xS, (1 +
ZJ“< MJ>

J

where n is the particle concentration. Equation (25) differs from Kennard’s expres-
sion for the mean frce path!® to account for the fact that the momentum of particle 1
relative to particle j 1is decreased by the fraction 2(1 + Mi/M y~! on each elastic
collision with particle j. This factor multiplies each term of the summation in the
denominator of Kennard's formula, and the result is the same as obtained in the more
rigorous matrix formulation for the viscosity of mixtures?! if the off-diagonal ele-
ments of the matrix are set equal to zero. This is valid in a first approximation at
least, as the off-diagonal elements are small compared to the trace elements of the
matrix. Buddenberg and Wilke?? have shown that experimental data on the viscosity of
mixtures can be reproduced by empirically adjusting the numerical factor 2 before
those terms of the summation in Equation 25 which involve unlike particles (i 7’j).
However, in view of the other approximations involved in the present analysis, it did
not seem warranted to use a more sophisticated formulation for the viscosity of the
mixture than given above, The estimated viscosities are shown as a function of tem-
perature for pressures of 10°, 1072 and 107" atmospheres in Figure 6. The ordinate is
the ratic of the coefficient given by Equation (24) to the value given by the Suther-
land formula:

_ . VT gm .
Mo = 1.462 x 10 (26)
112 cm sec

where T 1s in degrees Kelvin. Presumably, Equation (26) is about the viscosity which
the gas would have if air molecules remained inert. The effect of the dissociation
reactions is to increase slightly the ratio u/p . However, the charged particles have
very large cross sections when they collide with one another, so the viscosity is
reduced to comparatively low values at the higher temperatures where ionization becomes
predominant,

A theory for the thermal conductivity of a chemically reacting gas was first out-
lined by Nernst?3, The theory is used here in the form subsequently developed by
Hirschfelder?"®, in which the energy transfer through the gas is treated in two inde~-
pendent parts. The first mode of energy transfer is by molccular collisions just as
for ordinary non-reactive gases, The second mode of energy transfer is by diffusion
of the molecular species and the reactions which occur as the gas tends to maintain
itself in chemical equilibrium. For the first mode, use is made of Eucken’s assump-
tion?® that the internal energy is distributed among the gas particles independentiy
of the velocity distribution, so that the partial coefficient of thermal conductivity
takes the form

51 \ Cy , 9R ”n
= p— u —_ —_—— (
ay/ )
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Hirschfelder formulates the reactive contribution to thermal conductivity in terms of
the multicomponent diffusion coefficients which are somewhat difficult to estimate.
However, Butler and Brokaw?® have shown that the reactive coefficient of conductivity
may be expressed in terms of the ordinary binary diffusion coefficients, D,,:

13-
d(ln K))2
nk {——
_ d(ln T)

Kreactive = (28)
:Ei k
(aixj - ajxi)
. x,D
1§ 1¥13

where the ai's are the stoichiometric coefficients of the components A1 when the
chemical reaction is written in the form

. 29
ZaiAi = 0 (29)
I

The diffusion coefficients are calculated by elementary kinetic theory as follows!3:

= (2 2 g (30)
3

The total coefficient of thermal conductivity given by Hirschfelder?" is just the sum
of the inert and reactive parts: )

K = Kinert + Kreactive (31)

The estimated coefficients of thermal conductivity are shown for pressures of 100,
1072 and 10™* atmospheres as a function of temperature in Fligure 7. Again the
ordinate is normalized by an inert gas value given by

19

= R (32)
K = =
0 4 M Ko

The thermal conductivity goes through pronounced maxima at temperatures where the
chemical activity is intense. As shown in Figure 7, the coefficient may become one
to two orders of magnitude lareer +%qp the inert gas value. The maxima occur at about
the same temperature where the compressibility changes wost rapidly with tempeirature
(Fig. 2) and therefore where the specific heats are a maximum. In fact, Hirschfelder?"
has noted that the thermal conductivity should be approximately proportional to the
specific heat for the chemically reacting gas just as it is for the inert gas (Eq. 27).
It follows that the Prandtl number should not be grossly affected by the reactions, at
least up to the temperature where the ionizaticn reactions occur. The highly ionized
gas is a mixture of very light-weight particles (electrons) with heavy particles (ions)
and the effect of this mass difference is to increase greatly the ratio of thermal
conductivity to viscosity. Thus, if the ionized gas is everywhere in thermal equili-
brium, it should have a very small Prandtl number, of the order of 1072 (see Ref. 9).
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Some very approximate assumptions are used in the foregoing calculations of the
transport properties, and it is obviously desirable to check them with experiment in
some manner, It seems difficult to obtain the transport coefficients directly by
experiment at the very high temperatures involved, but it has been possiblz to evaluate
a quantity called the heat flux potential by combining some results of shock tube
experiments with the theory of heat diffusion through gases. The heat flux potential
is defined as

¢ = f k dT (33)

so it represents a transport property. This integral has the quality of a potential,
since the heat flux at any point in a medium is just grad ¢. The heat flux potential
is the natural parameter to use as the dependent variable in problems involving heat
diffusion through media where the thermal conductivity is a function of tempc.ature,
as it is for gases. In terms of ¢, the heat diffusion equation takes the familiar .
form

at
—-aV% = 0 34
52 ¢ (34)

where a is the thermal diffusivity, k/oC_, Note that the diffusivity cannot be
considered a constant as is usually done in the classical solutions of the heat dif-
fusion equation (see Ref, 27, for example).

" Consider now the one-dimensional heat flow through a semi-infinite gas medium. We
shall restrict ourselves to the case where the initial conditions and the boundary
conditions are constants; that is, the initial potential throughout the gas is the
constant designated by ¢b- and the boundary value is the constant ¢$ (see Fig. 8).

The diffusivities are a, and a;, respectively. Normalized coordinates will be used
such that ¢% and a, are both taken to be unity. The results can easily be general-

ized, of course, to account for arbitrary units of these boundary conditions.

The idealization of constant initial and boundary conditions will be approximately
realized in a physical situation where the reservoir is a slab of material with a very
large heat capacity and a large thermal conductivity, such as a metal, Then the wall
can soak up heat fast enough to maintain nearly constant conditions at the interface.
The slab might be suddenly immersed in a constant temperature gas, for example; or,
alternatively, the gas might be heated suddenly by a plane shock wave reflecting from
the solid interface.

Boltzmann?® has shown, with perfect generality, that the solution to this problem
may be expressed as a function of xA/t. Therefore, the time and distance variables
are transformed to the single dimensionless parameter

X
y = — (35)
/(4a0t)

where a, is the diffusivity of the gas at the boundary; a, is unity, of course,
in the present normalized coordinate system, but this is not an essential feature of
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the transformation. In terms of this parameter, y, the partial differential equation
of heat conduction becomes the dimensionless, total differential equation

a—+2y — = 0 (36)

The factor 4 in the parameter y (Eq. 35) is an arbitrary stretching factor. It
is chosen merely so that the solutions to Equation (36) reduce to the usual error
function form when the diffusivity is constant, that is, when & equals a,. The
merit in using the normalized form for the potential ¢ (that is, ¢w¢0) {s that one
set of integrations for Equation (36) will suffice for all possible boundary conditions.
All that is required before one proceeds with the integration is that the diffusivity,
a, be evaluated. Two cases will be considered, one in which the gas 1s ideal and
inert, and the second in which the gas is in local equilibrium but is chemically active
with a large heat of reaction.

According to the kinetic theory of inert gases!®, the coefficient of thermal con-
ductivity is approximately proportional to a power b of the temperature, where b
is close to %. Thus the integral of thermal conductivity is proportional to the
(b+1)th power of temperature:

b = f« dT a Tb*! (37

Now the thermal diffusivity eduals the conductivity divided by the heat capacity
per unit volume, Cec. Since the density 4 is inversely proportional to temperature,
for an ideal gas, the diffusivity is proportional to the (b+1)th power of temperature
also:

K
a = 5 o b1 (38)
Co

It follows that diffusivity is proportional to the potential ¢, and in the present
normal ized coordinates this means that

a = ¢ (39)

Sometimes a linear relation between a and ¢ with a finite intercept will hest
fit measured values, but this can always be transformed to the direct proportionality
of Equation (30) by appropriate adjustment of the lower limit of the integral,
Equation (33)., Generally, this 1limit will be close to absolute zero.

It may be remarked thaut even if one accounts for the variations of heat capacity
which occur in a real gas, the preceding relations are valid to the order of approxi-
mation that Prandtl number is a constant. This can be seen from the fact that diffu-
sivity is just the kinematic viscosity divided by the Prandtl number:

-

Pr

(40)

and the kinematic viscosity is again approximately proportional to the (b+1)th power of
temperature, at least in gases composed of neutral particles.
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When the result of Equation (39) is used, the heat diffusion equation takes on the
inocuous looking form

d%p db
—+ 2y — = 0 41
¢ iy ay (41)

Analytic solutions to Equation (41) are known, but none which satisfies the boundary
conditions, namely:

O = 1 (42a)
limg = &,

This is somewhat frustrating in view of the deceptively simple appearance of fthe non-
linear Equation (41), However, it is relatively easy to integrate the equation
numerically, starting from a given value of the boundary derivative, ¢8 = (d¢/dy)0,
and terminating as the solution asymptotically approaches a limit, ¢,. The solutions
are something like error functions stretched slightly out of shape. Three of these
solutions are shown in Figure 9 as a function of y/#@,. The solutions ¢ are shown
divided by the error functions 1 t (¢, - 1l)erf yNéb.. The ¢ functions rise more
steeply than the error functions near the orgin, go through a maximum deviation, then

approach the error function as a limit.

The value of ¢& is uniquely related to the derivative at the origin,cﬁg. This
relation is shown in Figure 10. The derivative ¢6 is equivalent to a dimensionless
heat flux at the boundary, while the normalizing function, 1 + V%ﬁ\ﬁ’, is the value
which ¢5 would have if diffusivity were a constant. We shall return to this relation
between ¢, and ¢% after considering the case of the chemically reacting gas.

A chemical reaction in the gas behaves like a reservoir which soaks up heat as
temperature is increased, and liberates heat when temperature drops. Consequently,
the specific heat is very large if the heat of reaction is large compared to RT.
Hirschfelder?® has shown that the coefficient of thermal conductivity for gases in
local equilibrium is also very large; in fact, it is approximately proportional to
the specific heat. Thus, the Prandtl number is relatively constant and the diffusi-
vity 1s a function of temperature which is not greatly affected by the chemical
reaction, The integral of thermal conductivity, on the other hand, is greatly increased
as a result of the reaction. This situation is illustrated in Figure 11.

The diffusivity increases Iinearly with ¢ up to the point where the chemical
reaction occurs, there it flattens out until the reaction is about compiete, then it
increases again in a more or less linear manner, The solid lines are the previously
discussed theoretical estimates for air in which oxygen dissociation occurs. The
pressure dependence of the curve for ¢ less than Z¢E has been removed by normal-
izing both ordinate and ahscissa with the factor ¢%:

b, = (—c) (43)
TO
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where T0 is the boundary temperature, and T, is the temperature where the thermal

conductivity is a maximum, that is, where the diffusivity is most nearly independent

of the conductivity integral. The temperature T, may be calculated from Equation (28).
It should be noted that the calculation of the relation between diffusivity and the

conductivity integral does not depend on precise numerical values of the transport

coefficients. For example, although the estimate shown for air in Figure 11 is based

on simple kianetic theory and very approximate collision cross sections, the corrections

introduced by more exact calculations affect both the diffusivity and the conductivity

nd e

simultaneously in such a way that the functional relation between the two is maintained,

The relation for reacting gases in general will be similar to that for air. The
dashed curve on Figure 11 is a limit which is approached as the heat of reaction becomes
very large., This limiting relation has been used in the integrations which follow, that
is, a 1s assumed to equal ¢ up to the point ¢E and thereafter is taken to be
constant. Up to the point ¢E then, the solutions are the stretched-out error func-
tions which were discussed earlier and which are shown in Figure 9. At ¢E' these
solutions are joined by the solution for constant diffusivity which has a matching
slope at the junction, (dg/dy),:

~

h 7t 2 ¥
¢ = ¢t ——(-:(%> [/EXD i’_\. erf—y— - erf —c> (44)
4 \dy o\ b/ v, v,

In Figure 12, the limit of the potential ¢5 is shown for a reacting gas as a
function of the boundary heat flux, ¢%. The solution now depends on the value of
¢h' which in turn depends on the boundary temperature, the pressure, and the chemical
reaction being considered. For example, in the case of air and a boundary temperature
of 0° ¢, the values 20, 40 and 60 for ¢, correspond to pressures of about 1074, 10°
and 102 atmospheres, respectively, The solutions for values of ¢E corresponding to
other pressures and different boundary temperatures can be obtained fairly accurately
by interpolation between the numerically integrated solutions such as the curves
plotted in Figure 12. The inert gas solution (Fig. 10) corresponds to ¢k equal to
infinity (Fig. 12). It should be noted that these solutions can only be used up to
the point where the chemical reaction goes to completion. Beyond this, the increase
in diffusivity must again be taken into account. The domain of validity is a charac-
teristic of each specific reaction. Within this limitation, the curves of Figure 12
apply to chemically reacting gases in general.

The above solutions have been put to use, in conjunction with experiment, to evalu-
ate the heat flux potential as a function of temperature?®:3°, In this experiment, a
plane shock wave is reflected from the end wall of a shock tubc. The heat flux io ihe
wall is measured, and this fixes the abscissa for the graphical sclution on Figure 12,
The temperature at the wall and the pressure of the gas after the shock reflection
determine the value of ¢E {see Eq. 43), Hence the value of the ordinate in Figure
12 is fixed, and the value of ¢, is determined. The temperature of the gas associa-
ted with this heat flux potential ¢, is taken to be the equilibrium temperature after
the shock reflection, and this is a known function of the measured shock velocity.

This procedure, of course, implies that the experiments are conducted under conditions
where the chemical relaxation times are short compared te the test interval,
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Results of the experiments and calculations are shown in Figure 13. The heat flux
potential is shown divided by the inert gas value, where the coefficient b is taken
to be 1/2

2 T\ /2 cal
= 4 — 1 -6 m3f2
Finert &, T (T ) ~ 3.2x10°°T ——— (45)
0

and where T 1is in degrees Kelvin, Thus the ratio ¢Vdﬁnert should be unity if the
coefficient of thermal conductivity is proportional to the 1/2-power of temperature,
This appears Lo be approximately true up to the temperature where oxygen dissociation
begins. At the pressures involved in the present shock tube experiments, this occurred
at about 2500°%K. At higher temperatures, the heat flux potential becomes more than
twice as large as the inert gas value as a result of the dissociation of oxygen. The
solid curve on Figure 13 shows the theoretical heat flux potential, based on the esti-
mates for the coefficients of thermal conductivity., The agreement between the experi-
ment and theory is about as good as the scatter in the data and is somewhat better than
the uncertainty expected of the theory, The small deviation from inert gas behavior
which occurs just before the dissociation reaction has been explained®? as the result
of small increases in the thermal conductivity integral due to vibrational energy
excitation and to formation and ionization of nitric oxide. The theory and experiment
appear to agree on the large change due to oxygen dissociation, and it is believed that
the theoretical estimates may represent a reasonable approximation to use for some
engineering purposes, However, it is clear that the experimental results give merely
a necessary but not sufficient check on the validity of the approximate methods used

to evaluate the transport coefficients. If may be noted that the potential shown in
Figure 13 is not a constant pressure function but follows the particular progression

of pressures cbtained with the various strength shock waves produced for the experi-
ment. The theoretical potentials are shown in Figure 14 for temperatures up to 8000°K
and for constant pressures from 102 to 10™* atmospheres. Interpolations can be made
approximately in proporticn to the logarithm of pressure,

4. CONCLUDING REMARKS

To summarize, some methods have been outlined by which thermodynamic properties of
air can be approximated in closed form with an accuracy generally somewhat better than
5% for temperatures up to 15,000°K and for pressures from 10™% to 10° atmospheres,

The solutions are analytic in terms of temperature and pressure or of temperature and
density as the independent variables. A single series of iterations suffices for
calculation of constant entropy properties.

The equilibrium mol fractions have been used for estimates of the viscosity and
thermal conductivity for air, These estimates are based on the elementary kinetic
theory of colliding elastic spheres where the size of the sphere is allowed to vary
with temperature so as to account for some functional dependence of collision cross
section on velocity, The coefficient of thermal conductivity integrated with respect
to temperature is a heat flux potential and is found to be the natural parameter to
use as the dependent variable in problems involving heat diffusion through gases.

This potential has been evaluated by experiment for air vp to 5000°K, including the
effect of oxygen dissociation, and the results are found to agree reascnably well with
the theoretical estimates,
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